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Microscopic theory of atomic static displacements in 
substitutional binary alloys 

Z Gurskii and Yu Khokhlov 
Institute for Condensed Matter Physics, Svenlsitskii slr.1,290011 Lviv, W n e  

Received 21 F & N ~  1994, in final form 1 1  May 1994 

Abstract A microscopic approach to considering the influence of atomic local static 
displacement (Am) on binary alloy thermodynamic propalies has been developed. An quation 
that permils the calculation of ASD amplitudes from first principles has been derived. The value 
of the ASD amplitude is shown to depend on the difference in the effective interatomic potentials 
of the alloy componens. The expression for the alloy free energy, which lakes the ASD into 
account, is oblaiaed by the collective variables method. The theoretical results are illustrated 
by numerical calculations, performed for alloys of the K-Rb system. The dependence of the 
ASD squared. avenged over configurations, on temperahlre and alloy concentration has been 
investigated, in particular. 

1. Introduction 

As is well known, the formation of alloys is accompanied by atomic static displacements 
(ASD). These are caused by distinctions in the effective interaction potentials between ions df 
the alloy componens [l]. The ASD have an essential effect on different alloy properties, in 
particular, on the x-ray and neutron scattering intensity 121. The ASD define the dependence 
of the alloy lattice parameter on component concentration. That is why explicit account of 
the ASD is important in constructing a consistent microscopic theory of substitutional alloys. 

The phenomenological theory of ASD in solid solutions has been developed [Z, 31. Its 
ideas are shown to be useful for interpretation of experiments related to the short-range 
order effects in multicomponent solid solutions [4]. But the problem of ASD or their Fourier 
components A,, determination has not yet been solved. The way to calculate Ak. based on 
the experimental information about elastic modulus and the lattice parameter dependence 
on alloy concentration, has been advanced in [2]. Complete information on these quantities 
is usually absent. A different approach for Ar calculations has been developed in [4]. The 
experimental values of the longitudinal and transverse acoustic velocities are used in this 
approach [4]. It is noteworthy that the ways to determine A k  developed in [2,4] could be 
applied in the long-wave limit IC + 0 only, where IC is the wavevector. 

The Fourier components of ASD for dilute binary solutions have been calculated in [5] 
within the continuum approximation. An approach to determine Ak in substitutional binary 
alloys by the pseudopotential method has been proposed [6]. To realize it, one needs to 
divide phenomenologically the alloy lattice into sublattices and specify the probabilities of 
sublattice site occupation by atoms of two kinds. The problem of the consistent account 
of short-range order effects has not been solved in [6]. Thus, the construction of such a 
microscopic theory that would allow one to calculate the ASD without utilization of any 
experimental data is of great impomnce. 
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The method of collective variables [7] has been very fruitful for construction of a 
consistent microscopic alloy theory with atom thermal vibrations and ASD taken into account 
explicitly [8-101. The basic ideas of the substitutional binary alloy thermodynamic property 
calculations by the collective variables method within the rigid-lattice approximation have 
been presented in [S, 91. This paper extends the ideas of [I]. The developed theory possesses 
the following feature: the problems of alloy lattice dynamics, ASD and thermodynamic 
property investigations are solved within the same approach, based on the collective 
variables method; see also [1,8-10]. 

This paper is organized in the following way: the calculation of the alloy partition sum 
by the collective variables method with explicit account of the ASD is given in section 2; 
the equations for the A k  determination are derived in section 3; section 4 illustrates the 
efficiency of the developed theory. 

2. The alloy partition sum 

Consider a substitutional binary alloy. The atoms of two kinds A and B are placed arbitrarily 
on N crystal lattice sites. Their configuration is given by the set of numbers UR which equals 
+1 if the site R is occupied by the A atom and equals -1 otherwise. 

The alloy Hamiltonian within the rigid-lattice and effective pair interionic interaction 
approximations has the form 

(1) 

Here K. j (q ) ,  i, j = A, B, is the Fourier transform of the effective interaction between 
ions of i and j kinds, VAB(q) = VBA(q) .  The explicit expressions for K , j ( q )  are given in 
appendix 1. 

The factor exp(iqR) in (1) could be expanded in power series of the static displacements 
SR 

exp(iqR) = exp[iq(RO + SR)] =-exp(iqRo)[l + iq8R - $f(SR)* + ...I (2) 

where Ro are the ideal lattice coordinates. One can restrict oneself to the square of SR in 
(2) if the ASD are small. 

Let us write down SR in tems of the normal coordinates 

and use the Fourier components of the occupation number 
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Vector k in (3) lies inside the first Brillouin zone (Bz). Equation (1) with allowance for 
(2)-(4) takes the form in a harmonic approximation 

where 

is the Hamiltonian of an ideal lattice without displacements. The explicit expression for 
potentials Vo, VI, Vz(k) and their physical meaning are presented in appendix 1. 

The addend f l ~ ( k ,  8% &) is linear in SR 

 HI(^ 6% b k )  = C{(G - ~ ) [ V A A ( G  - k) - VEIB(G - k)] 
G 

- ( G f k ) [ v A ~ ( G + k )  - V ~ ~ ( G + k ) l } ( S R k f i - k - S R k ~ k )  

= ( i / 2 ) p k ( S R k b - k  - S R k a k ) .  V) 
Here G is the reciprocal lattice vectors. The structure of the third addend in (5) is the 
following [l]: 

1 
Hz(k, a&, &) = f " ( k ) S R k S R - k  + - f '"(k f k')SRkSRk.b-_k-k, 

4% k'eBZ 

Vectors k' and k" lie inside the first BZ; f ( i ) (k )  (i = 0. 1,2) are the known functions given 
in appendix 2. Their form is similar to that of the coefficients of the square of the atomic 
thermal displacements in the alloy lattice dynamics problem; see [S, 101. One can note 
that 6 R k  with different indices k are mixed in (8) because of the absence of translation 
invariance in disordered alloys. 

and fib,& are concerned with 
the long-range order and the short-range order effects, respectively. The ASD are random 
quantities in a disordered alloy. They are related to the component concentration fluctuations 
and the long- and short-range order fluctuations. This relationship has the simplest form in 
the Fourier representation [l, 21 

The terms in HI (7) and HZ (8) proportional to 

S R k  = i [ ( A k / Z ) ( b r s  - f i & , k )  f ( l / f i ) & b k f i - k ]  (90) 

or in the more complex modification 

where A k  and B k  are unknown functions. The terms in (9a) proportional to and 
j k 6 - k  are concerned with the concentration, long-range order and short-range order effects, 
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respectively. Values of j k  at k + 0 relate, obviously, to the concentration fluctuations, 
while with the indices k* correspond to the absolute minimum of the ordering potential 
V,(R) = VAA(R) + VBB(R) - 2Vm(R) Fourier transforms are connected with the long- 
range order in alloys [7,8]. A simple relation exists between the Fourier transform (pkp-k) 
of the pair correlation function ( U R U ~ )  and the Fourier components of the short-range order 
parameter 191. Symbol ( )  denotes the configurational averaging. The approximation 

Z Gurskii and Yu Khokhlov 

6Rk = i(.Ak/2)(& - f i6o.k)  Ak = -Ak (9c) 

is used in the present paper. It means the direct influence of the short-range order effects 
on ASD are not taken into account. 

Let us calculate the alloy partition sum by the collective variables method taking the 
ASD explicitly into account. The expression for, the partition sum has the following form 
within this method [7-91 

Here p = (ksT)-' is the inverse temperature, and 

is the transition Jacobian from the set of variables OR to the collective variables pk space; see 
[7-91 for details. Symbol Tr(,l denotes that the trace in (1 la) is taken over the eigenvalues 
of all UR, pi (i = A ,  B) is the chemical potential of metal i. The factor with the chemical 
potentials in the J(p)  takes into account that there are 

atoms of two kinds in the binary alloy. The presence of the chemical potentials in (lla) 
permits one to perform the trace operation at each site independently of the concrete 
configuration [9]. 

It is seen from ( l ln)  that only the values of collective variables pk equal to the 
occupation number OR Fourier components j k  will contribute to the transition Jacobian 
J(p). Calculation of the transition Jacobian is described in detail in [7,8]. The function 
J ( p )  can be represented as an exponential infinite series 
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The following notations are accepted in (llb): 

3 a In Q 
a3 = 4, +34,a2 -~3!- .. a ~ ,  

(124 
an M - - ln[exp(-ppA - h )  + exp(-ppB + h) ]h=o  - ah" 

Here M, (n s 0, 1 ,2 ,3 , .  . .) are cumulants and the quantities ai (i = 1,2,3,. . .) are the 
coefficients ofthe transition Jacobian. As follows from (12bH12e) ai are complex functions 
of the chemical potentials. 

It was shown in [7,8] that the thermodynamic properties of binary alloys can be 
described adequately within the framework of the collective variables method by a Gaussian 
approximation in the temperature region T > T,, where Tc is the order-disorder phase 
transition temperature. In the Gaussian approximation the transition Jacobian J ( p )  can be 
calculated in analytical form. Putting accordingly into this approximation M3 = MA = 
. . . = 0 in (12b) one obtains 

n = 1,2, .  . , . 

a3 = 44 =. .. =o. 1 
4 2  = - QC = (-)'"exp 1 (3) a I  = - M I  

2 X M 2  2M2 M2 M2 

(13) 

In view of (lo), (ll), (13) and (5)-(9) the partition function in the Gaussian approximation 
of the collective variables method takes the form 

2 = QN exp(-NBVa) exp(NM0) /" . . . j e x p { - f i ( a l +  p f i  + + ~ o ~ o ) p o  
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Let us simplify (14) to calculate the partition sum analytically. One can replace p k ,  and 
p k p k f  in the last two terms of (14) by their averages within the framework of the Gaussian 
approximation: 

Z Gurskii and Yu Klrokhlov 

Pk3 -f ( P k , )  PkPk,  ( P k P V )  (15) 

where ( & ) ,  (Pk&) are the Fourier components of one-particle and pair distribution 
functions, respectively. One should emphasize that according to the definition of the 
collective variables Pk (see (8)). (&)  and ( P I P # )  are the Fourier transforms of the reference 
system distribution functions (Q) and (QUE), respectively. The alloy rigid lattice without 
any displacements is the reference system. 

At temperatures above the orderdisorder phase eansition point ( p k , )  and (PkPk') are 
defined withim the Gaussian approximation by [8,9]: 

(PO) = f i ( C A  - '%) ( P k )  0 k # 0 (16) 

where ej = Nj/N is the concentration of i atoms, i = A ,  B. 

of [IO]: 
One can rewrite the expression for the partition sum (14) using (15H17) and the results 

Z = QNexp(-Np?o)exp(NMo) j . . . j exp{-fi(al+ pi;)po 

Here 

Fo = Vo + t&@'O'Ao (194 

(196) 

(19d 

are the addends of the alloy Hamiltonian, renormalized by the ASD, and is the force 
constant matrix of the correlated average crystal (Uc). The expression for Q@) is given in 
[IO]; see also appendix 2. One can get familiarized with the CAC term value in [lo]. The 
approximation (15), made within the Gaussian one, allows one to get (18) and (19). It is 
noteworthy that in the force constant matrix the pair correlations (the short-range order 
effects) are explicitly taken into account through ( p k P - 6 )  owing to this approximation; see 
(A14). It means one could go beyond the framework of the single-site methods calculating 
the eigenvalues of [IO]. The integration variables are separated in (18). Thus, the 
partition sum can be easily calculated and the alloy free energy per atom, F = -In Z / ( B N ) ,  
is defined by the following formula: 

= Vi + $PoAo - { A O @ ( ~ ) &  

?2(k. A k )  = Vz(k) - P k A k  f i A k @ ' o ) A k  
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The free energy (20) is a function of temperature and chemical potentials. More suitable 
variables are temperature and concentration. Transition to new variables can be performed 
by the Legendre transformation 

F(T, c) = FV, P) - CLiNi (21) 
I=A.B 

where the chemical potentials are defined by 

ci = N J N  = aF/api  i = A ,  B. 

3. Equation for the ASD amplitudes 

The equilibrium values of the ASD amplitudes are determined from the condition of the 
alloy free energy extremum with respect to Ak 

= 0. (23) 
1 ac2lz(k, Ak) _-  - aF 

aAk 1 + P!&(k, A,)& aAk 

We consider temperatures above the order-disorder phase transition point I,. The quantity 
I + &(k, # o at T =- I,. Then, the system of equations 

determining the Cartesian components of the vector Ak, follows from (23)  and (19~). 

polarization vectors 
functions. The E ~ A  are the eigenvectors of the dynamic matrix *(O): 

To solve (24), expand the Ak and Pk in the complete set of some functions. The 
of the CAC vibrations could be used as such a complete set of basis 

@("EkA = h?G&€& (25) 

where h? = zI=A,B Mici is the average ion mass and (;kb is the frequency of CAC; see 
[8,10] for details. 

Then 

Here Aki, PkA are the expansion coefficients and A = 1,2,3 is the polarization index. 

(24) are obtained: 
Let us substitute (26) in (24) and take (25) into account. The following solutions of 
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Let us analyse the result (27) in detail. In the first place the formula (27b) corroborates 
the Krivoglaz conclusion that the waves of the static displacements are only longitudinal 
ones along the principal symmetry directions [loo], [110] and [ l l l ]  in alloys [2]. Such a 
deduction has been made in [2] on the basis of qualitative considerations. Let us prove it 
analytically. One can notice from (7) that the vectors P k  and k are parallel: Pk((k. The 
vibrations of the CAC are pure longitudinal or transverse ones along the [loo], [I101 and 
[ l l l ]  directions [SI: ~ k ~ l l k  and E ~ T ,  I k and EkT, I k. It means the transverse modes 
do not contribute to the A k a .  That is why A k l l k ;  see (27b). Besides, it is easy to find the 
asymptotic behaviour of the ASD amplitudes A k  in the long-wave limit k -+ 0. So long as 
P k  N IC (see (7)) and _N k, then ] A k J  N k-' at k + 0. This result confirms the similar 
finding made in [2] within the phenomenological approach. 

One can conclude from (27) and (7) that the ASD are small if the effective inter-ionic 
potentials of the alloy components are similar: VAA(~)  2 V B B ( ~ ) .  Really, P k  0 at 
VAA(Q)  = vBB(q) and then A k  = 0. This conclusion allows one to understand at the 
microscopic level the nature of the well known phenomenological Hum-Rothery rules 
[Ill.  

what are the peculiarities of the developed theory? It is a microscopic approach. All 
quantities in the RHS of (27) could be calculated from first principles. It is noteworthy that 
the expression for the P k  (7) as well as for the potentials CO, Cl, ?z(k), renormalized by 
the ASD, have been derived for the first time. It permits one to investigate the ASD influence 
on alloy thermodynamic properties consistently. 

Knowledge of the ASD amplitudes A k  permits one to calculate the quantities (SR) and 
(SR*), where symbol ( )  denotes the configurational averaging with the correlation functions 
(16), (17) of the reference system rigid lattice. The ASD SRi with (3) and (9) takes the form 

Z Gurskii and Yu Khokhlov 

Then, the average value of 6R; is equal at temperatures T > Tc to 

(6Ri) = 2% lim[Ak(kRP)l. (29) 

Equation (16) has been used in the derivation of (29). The projection of (8%) on the R; 
vector direction in lRPl units and with allowance for (27) is described by the formula 

k-0 

Here n@ is the unit vector in the RP direction: RY = IRylne. The square of the ASD, 
averaged'over configurations, is defined as 

where (&&e) is given by (17). Equation (30) describes lattice parameter alteration caused 
by the presence of B component in the alloy. One should take such an alloy component as 
a kind of B that CB < 0.5. The quantity (31) belongs to the important alloy characteristics. 
It defines the alloy Deby-Waller factor. 
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4. The atomic s t a ~ c  displacements in K-Rb alloys 

The ASD in alloys of K-Rb system have been investigated to illusmte the developed theory. 
Solid solutions of disordered alloys K,Rbl-, exist in the high-temperature region [l l] .  The 
K,Rbl-, alloys have a body-centred cubic (BCC) structure at T > T,. The alloy lattice 
parameter d obeys Vegard’s law 

d = dAcA -k dBce (32) 

where di ( i  = A, B) is the parameter of pure metal i. It means that the alloys of K-Rb 
system are similar to ideal solutions at high temperatures. 

The vector Pk (7) determines the amplitudes of the ASD in alloys; see (27). The 
behaviour of the P k  along the principal symmetry directions of the Brillouin zone is shown 
in figure 1 for two Ko.gRbo.1 and &.lRb.~ alloys. The P k  has been calculated according 
to the formulae (7), (AI), (AZ) and (A@, (A7). One can conclude the Pk behaves equally 
at different concentrations in the K,Rbl, alloys. The value of is small: 11: IO-+ au. 
By the way, the P k  is equal to zero in the high-symmetry points of the Brillouin zone; 
see figure 1. Figures 2 and 3 present the ASD amplitude Ak behaviour along the principal 
symmetry directions. It is seen that Ak is a weak function of concentration in K,Rbl-, 
solutions. The weak dependence of Ak on alloy concentration means that relationship (9c) 
is adequate for the K-Rb system. The Ak displays the most interesting behaviour in the 
[I 111 direction, but the largest values of it are in the [ 1001 direction; compare figures 2 and 
3. The lAkl Y k-’ in the long-wave limit: k + 0. 

Figure 1. The vector P(k) (7) projections on the 
principal symmetry directions for the 4i.sRbo.i (-) 
and &r.iRb,].g (----) alloys. 

The square of the ASD, averged over configurations. has been calculated with a view 
to (31). (27), (17) and (A5). The equilibrium volume of the reference system unit cell 
is supposed to obey Vegard‘s law; see (32). Figure 4~shows the dependence of @RZ) 
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0.35 I I - 

Figure 3. The amplitudes of the ASD in the [I001 
direction; notations are the same a in hgure 2. 

Figure* Dependence ofthe ntomicsraticdisplacement 
squared, averaged over configurations, for the second 
coordination sphere atoms at T = 80 K (-) and 
T = 200 K (----). 

on concentsation at two temperatures in K-Rb solutions. One can note that deviations 
from Vegard’s law are small in K-Rb solutions. They are the largest in the equiatomic 
alloys. As the temperature decreases, the (SIXz) increase; see figure 4. This result confirms 
numerically the statement that alloys of K-Rb system are like ideal solutions, especially at 
high temperatures. One can notice that the first derivative of (SR’) with respect to the alloy 
concentration is not a regular function for K-Rb solutions at both temperatures investigated. 
More accurate consideration of K,Rbl, physical properties is desirable at concentrations x 
corresponding to these peculiarities, for example, at x = 0.18 and T = 80 K see figure 4. 

5. Conclusion 

The approach suggested contains the following features. It is a microscopic theory that 
permits one to get some interesting results analytically. The next deductions are the most 
important. 

(i) The waves of the static displacements are only longitudinal ones along the principal 
symmetry directions [loo], [I101 and [ I l l ]  in alloys. 

(ii) The ASD are small if the effective inter-ionic potentials of the alloy components are 
similar, i.e. V A A ( ~ )  Y v B B ( q ) .  

( 3 )  The ASD amplitude A k  weak dependence on concentration in K,Rbl-, solutions, 
obtained within the approximation (Sc), allows one to conclude that the Iocal environment 
effects on ASD could be small in alloys the equilibrium volume of which obeys Vegard’s 
law. 

The conclusion (iii) is valid in the high-temperature region above the order-disorder 
phase transition point. There still remains the more comprehensive problem to examine the 
ASD in the vicinity of the phase instability point where the pair correlation (the short-range 
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order) effects are displayed strongly. Besides, the numerical results of the ASD investigations 
depend on such parameters of the theory as electron-ion model pseudopotential, the electron 
dielectric function (function of local field), etc., used in the calculations (see appendices 1 
and 2). All of the points mentioned above will be subjects of future research. 
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Appendix 1. 

The Fourier transforms of the effective pair potential between ith and j t h  kind ions within 
the second order of pseudopotential perturbation theory can be expressed in atomic units as 
follows: 

Here S20 = Q/N is the equilibrium volume per atom, Wi(q) the bare pseudopotential form 
factor of an ith kind ion, c(q)  the conduction electron dielectric function, which contains the 
exchange and correlation corrections, zj the jth kind ion charge, and 17 the Ewald parameter 
used to calculate the alloy electrostatic energy. 

In the present paper a model pseudopotential, proposed in [12] with the form factor 

is used as a bare pseudopotential, a and ro are the model pseudopotential parameters. The 
parameters ai, rp are supposed to be the same in the alloy as in pure metal of i kind 
(i = A, B). Their values for K and Rb have been utilized in the present paper: 

a K  = 2.671 rg = 0.689 ZK = 1 

aRb = 2.293 r:b = 0.779 Z R ~  = 1. 

The explicit expressions for Vo, VI and Vz(k) (see (6) and (19)). obtained in the second 
order of pseudopotential perturbation theory, are [8,91 
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, , .. , , , ,., ,.. , , , , , , , 
1 S(G) exp(iGR) + S"(G) exp(-iGR) 

= ;[ Giro 2 

The following notations are accepted in (A3) to (A5): kF = (3x2E/Qo)'/3 is the Fermi 
momentum of electron gas, Z =~ Ci=A.B~;~j the average ion valency in alloy, E,, 
the exchange-correlation energy of the homogeneous interacting electron gas, W r  = 
lim,o[Wi(q)+4xz;/Q201 the non-Coulomb part of the pseudopotential form factor, w"c = 
LA,B WY cj, S(q) = (l/N) CRexp(-iqR) the lattice structure factor, S(q) = S*(q), 
n(q) the polarization operator of electron gas, e(q) = 1 + (4n/q2)n(q). 

The dielectric function of Geldart and Vosko [I31 

with 

has been used in the calculation. Here G(q) is the function of local field 

with 

The expression for the exchange-correlation energy of the interacting electron gas 

Exc = -0.458/rs - 0.115 f0.031 In(?-,) r, = (3Q0/4rrz)"~ (A10) 

is consistent via the parameter $ with that for the static dielectric function owing to the 
exact relation between the polarization operator n(q) and the electron gas compressibility 
Wl. 

One can see from (A4). (As) that V,(R)' indicates the difference between alloy 
component atomic characteristics, and V2(k) is the Fourier transform of the ordering 
potential Vz(R) = VAA(R) + VBB(R) -2V.(R). In cubic crystals V,(R) = const, because 
of S ( G )  = 1 and exp(iGR) = 1; see (A4). 
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Appendix 2. 

The formulae for f“’ functions, entering (S), (14), are given below: 

j“’(k)  = 

(All)  

C [ ( G  + k)’Vij(G + k) + (G - k)’Vij(G - k) - Z(G)’Vij(G)] 
i , j=A B (  G 

j“’(k + k’) = C [ ( G  + k)’AV(G + k) + (G - k)’AV(G - k) - (G)’Av(G) 
G 

- ( G  + k + k‘)’AV(G + k + k’)] (-412) 

f‘”(k) = C ( G  + k)’[Vu(G + k) + VBB(G+ k) - ~ V A B ( G  + k)l (A13 

where AV(@ = Vu(q) - VBB(~) .  The force constant matrix W O )  of the correlated average 
crystal is a diagonal one in the wavevector representation with the matrix elements (see 
1% 101) 

G 

The Fourier components of the short-range order parameter [9] are present in the matrix 
elements (A14). It means the spatial atomic pair correlations are explicitly taken into 
account in the force constant matrix @’) of CAC. The Cartesian components of the functions 
f”’(k) and the force matrix -%CO) are defined in the way illustrated by the expression for 
f$(k) (see AH) 

Here G,,k ,  are the Cartesian components of the reciprocal lattice vector G and 
wavevector k, respectively. The expression A k @ ’ ) A k ,  presented in (19), means 

A~+@)A~ = C A;Q?;~(~)AE. 
4 P 3 . Y . Z  

Thus all quantities necessary to perform the calculations are determined. 
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